Improvement of sensitivity and detectability of the three-coil wear debris detection sensor using LC resonance method and modified lock-in amplifier
نویسندگان
چکیده
That how to improve the sensitivity and the detection ability of the Large-caliber sensor is critical to satisfy the requirement of heavy vehicle wear condition monitoring. In this paper, we introduced the LC resonance principle to the design of sensor with large flow channel (7mm). The resonant exciting coil increases the impedance change of the exciting circuit caused by wear particles which magnify the current difference between the two exciting coils and improve the sensitivity of the sensor. The resonant induction coil greatly suppresses the interference signals and magnifies the weak induced electromotive force which is beneficial to enhance the detection ability. In order to boost the detectability for different materials particles, a phase controlled variable-frequency exciting system (PCVFES) was adopted to automatically switch the exciting frequency between 284kHz for ferromagnetic particles and 420KHz for non-ferromagnetic particles. For the weak signal detection, based on the essential characteristic of the signal, we apply a simpler method that modified lock-in amplifier (MLIA) rather than the conventional algorithms (Wavelet transform, EMD). Results show that using these methods the sensitivity and the detection ability of the sensor are significantly improved and the 75μm iron particles and 220μm copper particles were successfully detected which realizes the initial abnormal wear monitoring for the large flow project.
منابع مشابه
Optimization of Online induction Sensor for Ferrous Metals Particles Identification in Engine Oil
Engine oil is one of most important parameters in internal combustion engine that plays effective role in component wear. One of the ways to optimize the performance of the IC engines is online monitoring of wear particle in engine oil. There are different ways to identifying these particles, most of which are offline. Nowadays online oil monitoring sensors are quickly developed. In this study ...
متن کاملEfficient Determination of Butylated Hydroxyanisole Using an Electrochemical Sensor Based on Cobalt Oxide Nanoparticles Modified Electrode
A simple and reliable electrochemical sensor based on cobalt oxide nanoparticles modified glassy carbon electrode (GCE/CoOxNPs) for determination of butylated hydroxyanisole is presented here. The nanoparticles were fabricated by electrodepositing method. The modified electrode shows excellent catalytic activity toward butylated hydroxyanisole oxidation in pH 12.0 phosphate buffer solution (PBS...
متن کاملAn electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture
In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...
متن کاملAn electrochemical acetaminophen sensor based on La3+/Co3O4 nanoflowers modified graphite screen printed electrode architecture
In this study, the La3+/Co3O4 nanoflowers were synthesized by co-precipitation method. The morphology of the La3+/Co3O4NFs were characterized using scanning electron microscopy (SEM), and were further used to modify the graphite screen printed electrode (GSPE). The electrochemical behavior of acetaminophen at La3+/Co<s...
متن کاملSpatial detection of ferromagnetic wires using GMR sensor and based on shape induced anisotropy
The purpose of this paper is to introduce a new technique for row spacing measurement in a wire array using giant magnetoresistive (GMR) sensor. The self-rectifying property of the GMR-based probes leads to accurately detection of the magnetic field fluctuations caused by surface-breaking cracks in conductive materials, shape-induced magnetic anisotropy, etc. The ability to manufacture probes h...
متن کامل